All functions

as_category()

Validate and coerce any object as a categorical variable.

as_dataset()

Validate and coerce any object as a dataset

as_data_dict()

Validate and coerce any object as a data dictionary

as_data_dict_mlstr()

Validate and coerce any object as an Opal data dictionary format

as_data_dict_shape()

Validate and coerce any object as a workable data dictionary structure

as_dossier()

Validate and coerce any object as a dossier (list of dataset(s))

as_taxonomy()

Validate and coerce any object as a taxonomy

as_valueType()

Validate and coerce any object according to a given valueType

bookdown_open()

Open a a web-based bookdown folder in a browser

bookdown_render()

Render a bookdown into a bookdown site

bookdown_template()

Create a bookdown template

check_dataset_categories()

Assess a data dictionary and associated dataset for category differences

check_dataset_valueType()

Assess a data dictionary and associated dataset for valueType differences

check_dataset_variables()

Assess a data dictionary and associated dataset for undeclared variables

check_data_dict_categories()

Assess a data dictionary for potential issues in categories

check_data_dict_missing_categories()

Assess categorical variables for non-Boolean values in 'missing' column

check_data_dict_valueType()

Assess a data dictionary for non-valid valueType values

check_data_dict_variables()

Assess a data dictionary for potential issues in variables

check_name_standards()

Assess variable names in a data dictionary for non-standard formats

col_id()

Return the id column names(s) of a dataset

dataset_cat_as_labels()

Apply data dictionary category labels to the associated dataset variables

dataset_evaluate()

Generate an assessment report for a dataset

dataset_preprocess()

Generate an evaluation of all variable values in a dataset

dataset_summarize()

Generate an assessment report and summary of a dataset

dataset_visualize()

Generate a web-based visual report for a dataset

dataset_zap_data_dict()

Remove labels (attributes) from a data frame, leaving its unlabelled columns

data_dict_apply()

Apply a data dictionary to a dataset

data_dict_collapse()

Transform multi-row category column(s) to single rows and join to "Variables"

data_dict_evaluate()

Generate an assessment report for a data dictionary

data_dict_expand()

Transform single-row category information to multiple rows as element

data_dict_extract()

Generate a data dictionary from a dataset

data_dict_filter()

Subset data dictionary by row values

data_dict_group_by()

Group listed data dictionaries by specified column names

data_dict_group_split()

Split grouped data dictionaries into a named list

data_dict_list_nest()

Bind listed data dictionaries

data_dict_match_dataset()

Inner join between a dataset and its associated data dictionary

data_dict_pivot_longer()

Transform column(s) of a data dictionary from wide format to long format

data_dict_pivot_wider()

Transform column(s) of a data dictionary from long format to wide format

data_dict_ungroup()

Ungroup data dictionary

data_extract()

Create an empty dataset from a data dictionary

dossier_create()

Generate a dossier from a list of one or more datasets

dossier_evaluate()

Generate an assessment report of a dossier

dossier_summarize()

Generate an assessment report and summary of a dossier

drop_category()

Validate and coerce any object as a non-categorical variable.

is_category()

Test if an object is a valid dataset

is_dataset()

Test if an object is a valid dataset

is_data_dict()

Test if an object is a valid data dictionary

is_data_dict_mlstr()

Test if an object is a valid Maelstrom data dictionary

is_data_dict_shape()

Test if an object is a workable data dictionary structure

is_dossier()

Test if an object is a valid dossier (list of dataset(s))

is_taxonomy()

Test if an object is a valid taxonomy

is_valueType()

Test if a character object is one of the valid valueType values

madshapR_DEMO

Built-in material allowing the user to test the package with demo data

madshapR_website()

Call to online documentation

summary_variables()

Provide descriptive statistics for variables in a dataset

summary_variables_categorical()

Provide descriptive statistics for variables of categorical in a dataset

summary_variables_date()

Provide descriptive statistics for variables of type 'date' in a dataset

summary_variables_datetime()

Provide descriptive statistics for variables of type 'datetime' in a dataset

summary_variables_numeric()

Provide descriptive statistics for variables of type 'numeric' in a dataset

summary_variables_text()

Provide descriptive statistics for variables of type 'text' in a dataset

valueType_adjust()

Attribute the valueType from a data dictionary to a dataset, or vice versa

valueType_guess()

Guess the first possible valueType of an object (Can be a vector)

valueType_list

Built-in data frame of allowed valueType values

valueType_of()

Return the valueType of an object

valueType_self_adjust()

Guess and attribute the valueType of a data dictionary or dataset variable

variable_visualize()

Generate a list of charts, figures and summary tables of a variable