R/07-data_summarize.R
summary_variables.Rd
Summarizes (in a data frame) the columns in a dataset and its data dictionary (if any). The summary provides information about quality, type, composition, and descriptive statistics of variables. Statistics are generated by valueType.
summary_variables(
dataset_preprocess,
dataset = NULL,
data_dict = NULL,
group_by = NULL
)
A data frame which provides summary of the variables (used for internal processes and programming).
A dataset object.
A list of data frame(s) representing metadata of the input dataset. Automatically generated if not provided.
A character string identifying the column in the dataset to use as a grouping variable. Elements will be grouped by this column.
A data frame providing statistical description of variables present in a dataset.
A data dictionary contains the list of variables in a dataset and metadata
about the variables and can be associated with a dataset. A data dictionary
object is a list of data frame(s) named 'Variables' (required) and
'Categories' (if any). To be usable in any function, the data frame
'Variables' must contain at least the name
column, with all unique and
non-missing entries, and the data frame 'Categories' must contain at least
the variable
and name
columns, with unique combination of
variable
and name
.
A dataset is a data table containing variables. A dataset object is a data frame and can be associated with a data dictionary. If no data dictionary is provided with a dataset, a minimum workable data dictionary will be generated as needed within relevant functions. Identifier variable(s) for indexing can be specified by the user. The id values must be non-missing and will be used in functions that require it. If no identifier variable is specified, indexing is handled automatically by the function.
{
# use madshapR_examples provided by the package
dataset <- madshapR_examples$`dataset_example`
dataset_preprocess <- dataset_preprocess(dataset)
summary_prep <- summary_variables(dataset_preprocess = dataset_preprocess)
head(summary_prep)
}
#> $`(all)`
#> # A tibble: 9 × 12
#> `Variable name` Quality assessment c…¹ `Categorical variable` `Variable class`
#> <chr> <chr> <chr> <chr>
#> 1 part_id [INFO] - All rows are… no no
#> 2 gndr NA no no
#> 3 height NA no no
#> 4 weight_ms NA no no
#> 5 weight_dc NA no no
#> 6 dob NA no no
#> 7 prg_ever NA no no
#> 8 empty [INFO] - Empty variab… no no
#> 9 opentext NA no no
#> # ℹ abbreviated name: ¹`Quality assessment comment`
#> # ℹ 8 more variables: `Number of rows` <dbl>, `Number of valid values` <dbl>,
#> # `Number of non-valid values` <dbl>, `Number of empty values` <dbl>,
#> # `% Valid values` <dbl>, `% Non-valid values` <dbl>, `% Empty values` <dbl>,
#> # `Number of distinct values` <dbl>
#>