Updates a data dictionary from a dataset, creating a new data dictionary with updated content, from variables selected in the dataset. Any previous other meta data will be preserved. The new data dictionary can be applied to the dataset using data_dict_apply().

data_dict_update(data_dict = NULL, dataset, cols = names(dataset))

Arguments

data_dict

A list of data frame(s) representing metadata of the input dataset. Automatically generated if not provided.

dataset

A dataset object.

cols

An optional character string specifying the name(s) or position(s) of the column(s) for which meta data will be updated. All by default.

Value

A list of data frame(s) identifying a data dictionary.

Details

A dataset is a data table containing variables. A dataset object is a data frame and can be associated with a data dictionary. If no data dictionary is provided with a dataset, a minimum workable data dictionary will be generated as needed within relevant functions. Identifier variable(s) for indexing can be specified by the user. The id values must be non-missing and will be used in functions that require it. If no identifier variable is specified, indexing is handled automatically by the function.

A data dictionary contains the list of variables in a dataset and metadata about the variables and can be associated with a dataset. A data dictionary object is a list of data frame(s) named 'Variables' (required) and 'Categories' (if any). To be usable in any function, the data frame 'Variables' must contain at least the name column, with all unique and non-missing entries, and the data frame 'Categories' must contain at least the variable and name columns, with unique combination of variable and name.

Examples

{

library(dplyr)

# use madshapR_examples provided by the package
dataset   <- madshapR_examples$`dataset_example`
data_dict <- as_data_dict_mlstr(madshapR_examples$`data_dictionary_example`)
dataset <- data_dict_apply(dataset,data_dict)

# the data dictionary contains no categorical variable.

# create a category in the dataset
dataset   <- dataset %>% mutate(gndr = as_category(gndr, labels = c("coucou" = 1),na_values = 2))
new_data_dict <- data_dict_update(data_dict, dataset, "gndr")

head(dataset)

}
#> # A tibble: 6 × 9
#>   part_id gndr              height weight_ms weight_dc dob        prg_ever empty
#>   <chr>   <int+lbl>          <int> <int+lbl>     <dbl> <date>     <int+lb> <int>
#> 1 ID001     1 [coucou]         191  63              NA 1990-03-22 -7 [Not…    NA
#> 2 ID002     2 [Female]         176  NA              65 2001-08-15  0 [Nev…    NA
#> 3 ID003     2 [Female]         154  NA             121 1996-12-17  2 [Cur…    NA
#> 4 ID004     2 [Female]         167 -88 [Don…        NA 1990-06-13  1 [Pre…    NA
#> 5 ID005     2 [Female]         185  NA              45 1996-12-17  8 [Don…    NA
#> 6 ID006   -77 [Don’t want …    171  57              NA 1981-03-31 -7 [Not…    NA
#> # ℹ 1 more variable: opentext <chr>