Generates a dossier object (list of one or more datasets).

dossier_create(dataset_list, data_dict_apply = FALSE)

Arguments

dataset_list

A list of data frame, each of them being dataset object.

data_dict_apply

Whether data dictionary(ies) should be applied to associated dataset(s), creating labelled dataset(s) with variable attributes. Any previous attributes will be preserved. FALSE by default.

Value

A list of data frame(s), containing input dataset(s).

Details

A dataset is a data table containing variables. A dataset object is a data frame and can be associated with a data dictionary. If no data dictionary is provided with a dataset, a minimum workable data dictionary will be generated as needed within relevant functions. Identifier variable(s) for indexing can be specified by the user. The id values must be non-missing and will be used in functions that require it. If no identifier variable is specified, indexing is handled automatically by the function.

Examples

{

# use madshapR_DEMO provided by the package
library(dplyr)

###### Example 1: datasets can be gathered into a dossier which is a list.
dossier <- dossier_create(
 dataset_list = list(
   dataset_MELBOURNE = madshapR_DEMO$dataset_MELBOURNE,
   dataset_PARIS = madshapR_DEMO$dataset_PARIS ))

glimpse(dossier)
    
###### Example 2: Any data frame can be gathered into a dossier
glimpse(dossier_create(list(iris, mtcars)))
   
}
#> List of 2
#>  $ dataset_MELBOURNE: tibble [19 × 6] (S3: tbl_df/tbl/data.frame)
#>   ..$ id        : num [1:19] 377943 497013 927676 995667 21829 ...
#>   ..$ Gender    : num [1:19] 2 1 1 2 2 1 2 2 2 1 ...
#>   ..$ BMI       : num [1:19] 22.1 18.5 24.6 15.7 18.6 ...
#>   ..$ age       : num [1:19] 52 49 43 59 40 47 -888 53 35 40 ...
#>   ..$ smo_status: num [1:19] 1 2 3 -77 NA 2 -77 2 1 1 ...
#>   ..$ prg_curr  : num [1:19] 0 -77 -77 1 0 -77 8 0 0 -77 ...
#>   ..- attr(*, "madshapR::class")= chr "dataset"
#>  $ dataset_PARIS    : tibble [24 × 7] (S3: tbl_df/tbl/data.frame)
#>   ..$ ID      : chr [1:24] "Paris_687393" "Paris_585666" "Paris_75802" "Paris_412072" ...
#>   ..$ SEX     : num [1:24] 1 0 0 1 1 0 1 1 1 0 ...
#>   ..$ BMI     : num [1:24] 22.2 15.2 22.7 NA 26.2 ...
#>   ..$ AGE     : num [1:24] 52 49 43 59 40 47 46 53 35 NA ...
#>   ..$ SMO     : num [1:24] 1 1 1 1 1 1 1 0 1 0 ...
#>   ..$ SMO_QTY : num [1:24] 32 8 48 11 18 7 18 -8 36 -8 ...
#>   ..$ PRG_EVER: num [1:24] 0 -8 -8 0 1 -8 NA 1 1 -8 ...
#>   ..- attr(*, "madshapR::class")= chr "dataset"
#>  - attr(*, "madshapR::class")= chr "dossier"
#> List of 2
#>  $ iris  :'data.frame':	150 obs. of  5 variables:
#>   ..$ Sepal.Length: num [1:150] 5.1 4.9 4.7 4.6 5 5.4 4.6 5 4.4 4.9 ...
#>   ..$ Sepal.Width : num [1:150] 3.5 3 3.2 3.1 3.6 3.9 3.4 3.4 2.9 3.1 ...
#>   ..$ Petal.Length: num [1:150] 1.4 1.4 1.3 1.5 1.4 1.7 1.4 1.5 1.4 1.5 ...
#>   ..$ Petal.Width : num [1:150] 0.2 0.2 0.2 0.2 0.2 0.4 0.3 0.2 0.2 0.1 ...
#>   ..$ Species     : Factor w/ 3 levels "setosa","versicolor",..: 1 1 1 1 1 1 1 1 1 1 ...
#>   ..- attr(*, "madshapR::class")= chr "dataset"
#>  $ mtcars:'data.frame':	32 obs. of  11 variables:
#>   ..$ mpg : num [1:32] 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
#>   ..$ cyl : num [1:32] 6 6 4 6 8 6 8 4 4 6 ...
#>   ..$ disp: num [1:32] 160 160 108 258 360 ...
#>   ..$ hp  : num [1:32] 110 110 93 110 175 105 245 62 95 123 ...
#>   ..$ drat: num [1:32] 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92 ...
#>   ..$ wt  : num [1:32] 2.62 2.88 2.32 3.21 3.44 ...
#>   ..$ qsec: num [1:32] 16.5 17 18.6 19.4 17 ...
#>   ..$ vs  : num [1:32] 0 0 1 1 0 1 0 1 1 1 ...
#>   ..$ am  : num [1:32] 1 1 1 0 0 0 0 0 0 0 ...
#>   ..$ gear: num [1:32] 4 4 4 3 3 3 3 4 4 4 ...
#>   ..$ carb: num [1:32] 4 4 1 1 2 1 4 2 2 4 ...
#>   ..- attr(*, "madshapR::class")= chr "dataset"
#>  - attr(*, "madshapR::class")= chr "dossier"