Applies category labels declared in a data dictionary to the associated columns (variables) in the dataset.

dataset_cat_as_labels(dataset, data_dict = NULL, col_names = names(dataset))

Arguments

dataset

A dataset object.

data_dict

A list of data frame(s) representing metadata of the input dataset. Automatically generated if not provided.

col_names

A character string specifying the name(s) of the column(s) which refer to existing column(s) in the dataset. The column(s) can be named or indicated by position.

Value

A data frame identifying a dataset.

Details

A dataset is a data table containing variables. A dataset object is a data frame and can be associated with a data dictionary. If no data dictionary is provided with a dataset, a minimum workable data dictionary will be generated as needed within relevant functions. Identifier variable(s) for indexing can be specified by the user. The id values must be non-missing and will be used in functions that require it. If no identifier variable is specified, indexing is handled automatically by the function.

A data dictionary contains the list of variables in a dataset and metadata about the variables and can be associated with a dataset. A data dictionary object is a list of data frame(s) named 'Variables' (required) and 'Categories' (if any). To be usable in any function, the data frame 'Variables' must contain at least the name column, with all unique and non-missing entries, and the data frame 'Categories' must contain at least the variable and name columns, with unique combination of variable and name.

Examples

{

dataset = madshapR_examples$`dataset_example`
data_dict = as_data_dict_mlstr(madshapR_examples$`data_dictionary_example`)
dataset_cat_as_labels(dataset, data_dict, col_names = 'gndr')

}
#> Processing of : gndr
#> # A tibble: 50 × 9
#>    part_id gndr         height weight_ms weight_dc dob   prg_ever empty opentext
#>  * <chr>   <chr+lbl>     <dbl>     <dbl>     <dbl> <chr>    <dbl> <lgl> <chr>   
#>  1 ID001   Male [1]        191        63        NA 3/22…       -7 NA    All chi…
#>  2 ID002   Female [2]      176        NA        65 8/15…        0 NA    grow up…
#>  3 ID003   Female [2]      154        NA       121 12/1…        2 NA    years o…
#>  4 ID004   Female [2]      167       -88        NA 6/13…        1 NA    flower …
#>  5 ID005   Female [2]      185        NA        45 12/1…        8 NA    rather …
#>  6 ID006   Don’t… [-77]    171        57        NA 3/31…       -7 NA    cried, …
#>  7 ID007   Female [2]      185        NA        58 4/19…        9 NA    that pa…
#>  8 ID008   Female [2]      171        NA        59 NA           2 NA    that sh…
#>  9 ID009   Don’t… [-77]    169        52        NA 3/14…       -7 NA    beginni…
#> 10 ID010   Male [1]        179        NA        62 10/1…       -7 NA    All chi…
#> # ℹ 40 more rows