NEWS.md
Attention: Some changes to functions in the current version of madshapR may require updates of existing code.
previous version (1.1.0 and older) | current version (2.0.0) |
---|---|
dataset_evaluate(as_data_dict_mlstr) | dataset_evaluate(is_data_dict_mlstr) |
data_dict_evaluate(as_data_dict_mlstr) | data_dict_evaluate(is_data_dict_mlstr) |
dossier_evaluate(as_data_dict_mlstr) | dossier_evaluate(is_data_dict_mlstr) |
In dataset_evaluate()
, data_dict_evaluate()
and dossier_evaluate()
, the columns generated in the outputs have been renamed as follows :
previous version (1.1.0 and older) | current version (2.0.0) |
---|---|
index | Index |
name | Variable name |
label | Variable label |
valueType | Data dictionary valueType |
Categories::label | Categories in data dictionary |
Categories::missing | Non-valid categories |
In dataset_summarize()
and dossier_summarize()
, the columns generated in the outputs have been renamed as follows :
previous version (1.1.0 and older) | current version (2.0.0) |
---|---|
index in data dict.name | Index |
name | Variable name |
label | Variable label |
Estimated dataset valueType | Suggested valueType |
Actual dataset valueType | Dataset valueType |
Total number of observations | Number of rows |
Nb. distinct values | Number of distinct values |
Nb. valid values | Number of valid values |
Nb. non-valid values | Number of non-valid values |
Nb. NA | Number of empty values |
% total Valid values | % Valid values |
% Non-valid values | % Non-valid values |
% NA | % Empty values |
———————————— | ——————————— |
https://github.com/maelstrom-research/madshapR/issues/123
https://github.com/maelstrom-research/madshapR/issues/112
https://github.com/maelstrom-research/madshapR/issues/75
https://github.com/maelstrom-research/madshapR/issues/87
https://github.com/maelstrom-research/madshapR/issues/82
https://github.com/maelstrom-research/madshapR/issues/81
https://github.com/maelstrom-research/madshapR/issues/76
https://github.com/maelstrom-research/madshapR/issues/116
https://github.com/maelstrom-research/madshapR/issues/115
https://github.com/maelstrom-research/madshapR/issues/109
data_dict_pivot_longer()
when ‘Source’ or ‘Target’ column was not present has been corrected.https://github.com/maelstrom-research/madshapR/issues/86
The SPSS format, which haven
package uses to produce labelled variables, define integers different form madshapR, which ultimately . That has been taken in account and corrected.
The SPSS format in the haven
package used to produce labelled variables defines integers differently from madshapR, which was causing errors. The difference has been taken into account.
dataset_preprocess()
now handles grouped dataset, using parameter “group_by”.
Users can now define groups in summaries and visual reports using a variable that is not categorical or has empty values.
https://github.com/maelstrom-research/madshapR/issues/47
https://github.com/maelstrom-research/madshapR/issues/114
https://github.com/maelstrom-research/madshapR/issues/113
https://github.com/maelstrom-research/madshapR/issues/126
https://github.com/maelstrom-research/madshapR/issues/104
https://github.com/maelstrom-research/madshapR/issues/98
https://github.com/maelstrom-research/madshapR/issues/97
https://github.com/maelstrom-research/madshapR/issues/96
https://github.com/maelstrom-research/madshapR/issues/95
https://github.com/maelstrom-research/madshapR/issues/94
https://github.com/maelstrom-research/madshapR/issues/93
https://github.com/maelstrom-research/madshapR/issues/92
https://github.com/maelstrom-research/madshapR/issues/91
https://github.com/maelstrom-research/madshapR/issues/90
https://github.com/maelstrom-research/madshapR/issues/89
https://github.com/maelstrom-research/madshapR/issues/88
https://github.com/maelstrom-research/madshapR/issues/85
https://github.com/maelstrom-research/madshapR/issues/108
https://github.com/maelstrom-research/madshapR/issues/107
https://github.com/maelstrom-research/madshapR/issues/106
https://github.com/maelstrom-research/madshapR/issues/100
typeof_convert_to_valueType()
converts typeof (and class if any) into its corresponding valueType.
valueType_convert_to_typeof()
converts valueType into its corresponding typeof and class in R representation.
data_dict_update()
updates a data dictionary from a dataset.
data_dict_trim_labels()
adds shortened labels to data dictionary.
first_label_get()
gets the first label from a data dictionary.
has_categories()
tests if a dataset has categorical variables.
https://github.com/maelstrom-research/madshapR/issues/63
variable_visualize()
when the column was empty after removing internally stopwords.https://github.com/maelstrom-research/Rmonize/issues/53
https://github.com/maelstrom-research/Rmonize/issues/49
dataset_evaluate()
https://github.com/maelstrom-research/madshapR/issues/66
https://github.com/maelstrom-research/madshapR/issues/62
data_dict_apply()
,valueType_guess()
and valueType_adujst()
) have been corrected to be more consistent in the usage of these functions.https://github.com/maelstrom-research/madshapR/issues/61
https://github.com/maelstrom-research/madshapR/issues/60
data_dict_summarize()
and dataset_evaluate()
have cells in tibble generated that can have more than accepted characters in a cell in Excel. the function truncates the cells in tibbles to a maximum of 10000 characters.https://github.com/maelstrom-research/madshapR/issues/59
dataset_cat_as_labels()
when the values found in the dataset are not in the data dictionary, and the valueType is text, and the dataType is “integer” has been fixed.https://github.com/maelstrom-research/madshapR/issues/58
https://github.com/maelstrom-research/madshapR/issues/57
dataset_evaluate()
has been corrected in the package fabR.To avoid confusion with help(function), the function madshapR_help()
has been renamed madshapR_website()
.
Some of the tests were made with another package (Rmonize) which as “madshapR” as a dependence.
in visual reports, void confusing changes in color scheme in visual reports.
Histograms for date variables display valid ranges.
in reports, change % NA as proportion in reports.
dossier_visualize()
report shows variable labels in the same lang.
in visual reports, the bar plot only appears when there are multiple missing value types, otherwise only the pie chart is shown.
in reports, all of the percentages are now included under “Other values (non categorical)”, which gives a single value.
suppress overwrite parameter in dataset_visualize()
.
in dataset_summary()
minor issue (consistency in column names and content).
variable_visualize()
when valueType_guess = TRUEenhance the function check_data_dict_valueType()
, which was too slow.
valueType_adjust()
now works with empty column (all NAs)
col_id()
function which is a short cut for calling the attribute madshapR::col_id
of a dataset.
as_category()
,is_category()
,drop_category()
function which coerces a vector as a categorical object. Typically a column in a dataset that needs to be coerced into a categorical variable (The data dictionary is updated accordingly).
Addition of NEWS.md
for the development version use “(development version)”.
Some improvements in the documentation of the package has been made.
internal call of libraries (using ::
) has been replaced by proper import in the declaration function.
get functions in fabR have been changed in its last release. the functions using them as dependencies ( check_xxx()
) have been updated accordingly.
DEMO files no longer include harmonization files that are now in the package harmonizR
These functions are imported from fabR
bookdown_template()
replaces the deprecated function bookdown_template()
.
bookdown_render()
which renders a Rmd collection of files into a docs/index.html website.
bookdown_open()
Which allows to open a docs/index.html document when the bookdown is rendered
This separation into 3 functions will allow future developments, such as render as a ppt or pdf.
Due to another package development (see fabR), The function open_visual_report()
has been deprecated in favor of bookdown_open()
imported from fabR package.
This package is a collection of wrapper functions used in data pipelines.
This is still a work in progress, so please let us know if you used a function before and is not working any longer.
These functions allows to create, extract transform and apply meta data to a dataset.
data_dict_collapse()
,data_dict_expand()
,data_dict_filter()
, data_dict_group_by()
,data_dict_group_split()
,data_dict_list_nest()
, data_dict_pivot_longer()
,data_dict_pivot_wider()
,data_dict_ungroup()
data_dict_match_dataset()
,data_dict_apply()
, data_dict_extract()
as_data_dict()
, as_data_dict_mlstr()
,as_data_dict_shape()
, is_data_dict()
, is_data_dict_mlstr()
, is_data_dict_shape()
as_taxonomy()
, is_taxonomy()
These functions allows to create, extract transform data/meta data from a dataset. A dossier is a list of datasets.
as_dataset()
, as_dossier()
is_dataset()
, is_dossier()
data_extract()
, dossier_create()
, dataset_zap_data_dict()
, dataset_cat_as_labels()
These functions allow user to work with, extract or assign data type (valueType) to values and/or dataset.
as_valueType()
, is_valueType()
, valueType_adjust()
, valueType_guess()
, valueType_self_adjust()
, valueType_of()
These helper functions evaluate content of a dataset and/or data dictionary to extract from them irregularities or potential errors. These informations are stored in a tibble that can be use to assess inputs.
check_data_dict_categories()
, check_data_dict_missing_categories()
, check_data_dict_taxonomy()
, check_data_dict_variables()
, check_data_dict_valueType()
, check_dataset_categories()
, check_dataset_valueType()
, check_dataset_variables()
, check_name_standards()
These helper functions evaluate content of a dataset and/or data dictionary to extract from them summary statistics and elements such as missing values, NA, category names, etc. These informations are stored in a tibble that can be use to summary inputs.
dataset_preprocess()
, summary_variables()
, summary_variables_categorical()
,summary_variables_date()
, summary_variables_numeric()
,summary_variables_text()
read_csv_any_formats()
The csv file is read twice to detect the number of lines to use in attributing the column type (guess_max
parameter of read_csv). This avoids common errors when reading csv files.
read_excel_allsheets()
The Excel file is read and the values are placed in a list of tibbles, with each sheet in a separate element in the list. If the Excel file has only one sheet, the output is a single tibble.
write_excel_allsheets()
Write all Excel sheets using xlsx::write.xlsx()
recursively.
plot_bar()
, plot_box()
, plot_date()
, plot_density()
, plot_histogram()
, plot_main_word()
, plot_pie_valid_value()
, summary_category()
, summary_numerical()
,summary_text()
data_dict_evaluate()
dataset_evaluate()
dossier_evaluate()
dataset_summarize()
dossier_summarize()
dataset_visualize()
variable_visualize()
open_visual_report()